
CS344 : Introduction to Artificial

Intelligence

Lecture 15- Robotic Knowledge

Representation and Inferencing; Prolog

A planning agent

 An agent interacts with the world via perception and actions
 Perception involves sensing the world and assessing the

situation
 creating some internal representation of the world

 Actions are what the agent does in the domain. Planning
involves reasoning about actions that the agent intends to carry
out

 Planning is the reasoning side of acting
 This reasoning involves the representation of the world that the

agent has, as also the representation of its actions.
 Hard constraints where the objectives have to be achieved

completely for success
 The objectives could also be soft constraints, or preferences, to

be achieved as much as possible

Interaction with static domain

 The agent has complete information of the domain
(perception is perfect), actions are instantaneous and
their effects are deterministic.

 The agent knows the world completely, and it can
take all facts into account while planning.

 The fact that actions are instantaneous implies that
there is no notion of time, but only of sequencing of
actions.

 The effects of actions are deterministic, and therefore
the agent knows what the world will be like after
each action.

Two kinds of planning

 Projection into the future
 The planner searches through the possible

combination of actions to find the plan that
will work

 Memory based planning
 looking into the past
 The agent can retrieve a plan from its

memory

Planning
•Definition : Planning is arranging a sequence of

actions to achieve a goal.

•Uses core areas of AI like searching and reasoning &

•Is the core for areas like NLP, Computer Vision.

•Robotics

•Examples : Navigation , Manoeuvring, Language

Processing (Generation)

Kinematics (ME)

Planning (CSE)

Language & Planning

• Non-linguistic representation for sentences.

•Sentence generation

•Word order determination (Syntax planning)

E.g. I see movie (English)

 I movie see (Intermediate Language)

see

I movie

agent object

STRIPS

•Stanford Research Institute Problem Solver (1970s)

•Planning system for a robotics project : SHAKEY (by

Nilsson et.al.)

•Knowledge Representation : First Order Logic.

•Algorithm : Forward chaining on rules.

•Any search procedure : Finds a path from start to goal.

•Forward Chaining : Data-driven inferencing

•Backward Chaining : Goal-driven

Forward & Backward Chaining

•Rule : man(x)  mortal(x)

•Data : man(Shakespeare)

To prove : mortal(Shakespeare)

•Forward Chaining:

man(Shakespeare) matches LHS of Rule.

X = Shakespeare

 mortal(Shakespeare) added

-Forward Chaining used by design expert systems

•Backward Chaining: uses RHS matching

- Used by diagnostic expert systems

Example : Blocks World

•STRIPS : A planning system – Has rules with

precondition deletion list and addition list

A

C

A

C B

B

START GOAL

Robot

hand

Robot

hand

Sequence of actions :

1. Grab C

2. Pickup C

3. Place on table C

4. Grab B

5. Pickup B

6. Stack B on C

7. Grab A

8. Pickup A

9. Stack A on B

Example : Blocks World

•Fundamental Problem :

The frame problem in AI is concerned with the question

of what piece of knowledge is relevant to the situation.

•Fundamental Assumption : Closed world assumption

If something is not asserted in the knowledge base, it is

assumed to be false.

(Also called “Negation by failure”)

Example : Blocks World

•STRIPS : A planning system – Has rules with

precondition deletion list and addition list

on(B, table)

on(A, table)

on(C, A)

hand empty

clear(C)

clear(B)

on(C, table)

on(B, C)

on(A, B)

hand empty

clear(A)

A

C

A

C B

B

START GOAL

Robot

hand

Robot

hand

Rules
•R1 : pickup(x)

Precondition & Deletion List : hand empty,

 on(x,table), clear(x)

Add List : holding(x)

•R2 : putdown(x)

Precondition & Deletion List : holding(x)

Add List : hand empty, on(x,table), clear(x)

Rules
•R3 : stack(x,y)

Precondition & Deletion List :holding(x), clear(y) Add

List : on(x,y), clear(x)

•R4 : unstack(x,y)

Precondition & Deletion List : on(x,y), clear(x)

Add List : holding(x), clear(y)

Plan for the block world problem

• For the given problem, Start  Goal can be achieved

by the following sequence :

1. Unstack(C,A)

2. Putdown(C)

3. Pickup(B)

4. Stack(B,C)

5. Pickup(A)

6. Stack(A,B)

• Execution of a plan: achieved through a data structure

called Triangular Table.

Triangular Table

holding(C)

unstack(C,A)

putdown(C)

hand empty on(B,table) pickup(B)

clear(C) holding(B) stack(B,C)

on(A,table) clear(A) hand empty pickup(A)

clear(B) holding(A) stack(A,B)

on(C,table) on(B,C) on(A,B)

clear(A)

clear(C)
on(C,A)

hand empty

0 1 2 3 4 5 6

1

2

3

4

5

6

7

Triangular Table

• For n operations in the plan, there are :

• (n+1) rows : 1  n+1

• (n+1) columns : 0  n

• At the end of the ith row, place the ith component of the plan.

• The row entries for the ith step contain the pre-conditions for the

ith operation.

• The column entries for the jth column contain the add list for the

rule on the top.

• The <i,j> th cell (where 1 ≤ i ≤ n+1 and 0≤ j ≤ n) contain the pre-

conditions for the ith operation that are added by the jth operation.

• The first column indicates the starting state and the last row

indicates the goal state.

Search in case of planning

 Ex: Blocks world

 Triangular table leads

 to some amount of fault-tolerance in the robot

Start

S1 S2

Pickup(B) Unstack(C,A)

A

C

B
START

A C B

A

C B

WRONG

MOVE

NOT ALLOWED

Resilience in Planning

 After a wrong operation, can the robot come back
to the right path ?

 i.e. after performing a wrong operation, if the
system again goes towards the goal, then it has
resilience w.r.t. that operation

 Advanced planning strategies

 Hierarchical planning

 Probabilistic planning

 Constraint satisfaction

Prolog Programming

Introduction

 PROgramming in LOGic

 Emphasis on what rather than how

Basic Machine

Logic Machine

Problem in Declarative Form

Prolog’s strong and weak
points

 Assists thinking in terms of objects and
entities

 Not good for number crunching

 Useful applications of Prolog in

 Expert Systems (Knowledge
Representation and Inferencing)

 Natural Language Processing

 Relational Databases

A Typical Prolog program

Compute_length ([],0).

Compute_length ([Head|Tail], Length):-

 Compute_length (Tail,Tail_length),

 Length is Tail_length+1.

High level explanation:

 The length of a list is 1 plus the length of the
tail of the list, obtained by removing the first
element of the list.

This is a declarative description of the
computation.

Fundamentals

(absolute basics for writing Prolog
Programs)

Facts

 John likes Mary
 like(john,mary)

 Names of relationship and objects must begin
with a lower-case letter.

 Relationship is written first (typically the
predicate of the sentence).

 Objects are written separated by commas
and are enclosed by a pair of round brackets.

 The full stop character ‘.’ must come at the
end of a fact.

More facts
Predicate Interpretation

valuable(gold) Gold is valuable.

owns(john,gold) John owns gold.

father(john,mary) John is the father of
Mary

gives (john,book,mary) John gives the book to
Mary

 Questions based on facts

 Answered by matching

Two facts match if their predicates are same
(spelt the same way) and the arguments
each are same.

 If matched, prolog answers yes, else no.

 No does not mean falsity.

Questions

Prolog does theorem proving

 When a question is asked, prolog tries
to match transitively.

 When no match is found, answer is no.

 This means not provable from the given
facts.

Variables

 Always begin with a capital letter

 ?- likes (john,X).

 ?- likes (john, Something).

 But not

 ?- likes (john,something)

Example of usage of variable

Facts:
likes(john,flowers).

likes(john,mary).

likes(paul,mary).

Question:

 ?- likes(john,X)

Answer:
X=flowers and wait

;

mary

;

no

Conjunctions

 Use ‘,’ and pronounce it as and.

 Example

 Facts:

 likes(mary,food).

 likes(mary,tea).

 likes(john,tea).

 likes(john,mary)

 ?-
 likes(mary,X),likes(john,X).

 Meaning is anything liked by Mary also liked by John?

Backtracking (an inherent property
of prolog programming)

likes(mary,X),likes(john,X)

likes(mary,food)

likes(mary,tea)

likes(john,tea)

likes(john,mary)

1. First goal succeeds. X=food

2. Satisfy likes(john,food)

Backtracking (continued)

Returning to a marked place and trying to resatisfy is
called Backtracking

likes(mary,X),likes(john,X)

likes(mary,food)

likes(mary,tea)

likes(john,tea)

likes(john,mary)

1. Second goal fails

2. Return to marked place

 and try to resatisfy the first goal

Backtracking (continued)

likes(mary,X),likes(john,X)

likes(mary,food)

likes(mary,tea)

likes(john,tea)

likes(john,mary)

1. First goal succeeds again, X=tea

2. Attempt to satisfy the likes(john,tea)

Backtracking (continued)

likes(mary,X),likes(john,X)

likes(mary,food)

likes(mary,tea)

likes(john,tea)

likes(john,mary)

1. Second goal also suceeds

2. Prolog notifies success and waits for a reply

Rules

 Statements about objects and their
relationships

 Expess
 If-then conditions

 I use an umbrella if there is a rain

 use(i, umbrella) :- occur(rain).

 Generalizations
 All men are mortal

 mortal(X) :- man(X).

 Definitions
 An animal is a bird if it has feathers

 bird(X) :- animal(X), has_feather(X).

Syntax

 <head> :- <body>

 Read ‘:-’ as ‘if’.

 E.G.

 likes(john,X) :- likes(X,cricket).

 “John likes X if X likes cricket”.

 i.e., “John likes anyone who likes cricket”.

 Rules always end with ‘.’.

Another Example

sister_of (X,Y):- female (X),

 parents (X, M, F),

 parents (Y, M, F).

X is a sister of Y is

 X is a female and

 X and Y have same parents

Question Answering in presence
of rules

 Facts

 male (ram).

 male (shyam).

 female (sita).

 female (gita).

 parents (shyam, gita, ram).

 parents (sita, gita, ram).

Question Answering: Y/N type: is sita the
sister of shyam?

female(sita)
parents(sita,M,F) parents(shyam,M,F)

parents(sita,gita,ram)
parents(shyam,gita,ram)

success

?- sister_of (sita, shyam)

Question Answering: wh-type: whose
sister is sita?

female(sita)
parents(sita,M,F) parents(Y,M,F)

parents(sita,gita,ram)

parents(Y,gita,ram)

Success

Y=shyam

parents(shyam,gita,ram)

?- ?- sister_of (sita, X)

Exercise

1. From the above it is possible for
somebody to be her own sister. How
can this be prevented?

